Online Appendix for:

Testing Ambiguity Models through the Measurement of Probabilities for Gains and Losses

Aurélien Baillon and Han Bleichrodt

A - Test of models

A.1. Maxmin expected utility (MEU) and Maxmax expected utility

Lemma 1: For all disjoint events E and $F, \inf \left(\mathrm{I}_{\mathrm{E}}\right)+\inf \left(\mathrm{I}_{\mathrm{F}}\right) \leq \inf \left(\mathrm{I}_{\mathrm{E} \subset \mathrm{F}}\right)$ and $\sup \left(\mathrm{I}_{\mathrm{E}}\right)+\sup \left(\mathrm{I}_{\mathrm{F}}\right) \geq \sup \left(\mathrm{I}_{\mathrm{E} \cup \mathrm{F}}\right)$.

Proof: This can be deduced from the definition of I_{E} (see main text).

Result 1. MEU predicts $\mathrm{BC}^{-}(\mathrm{E}) \leq 0 \leq \mathrm{BC}^{+}(\mathrm{E})=-\mathrm{BC}^{-}(\mathrm{E})$.

Proof:

Under MEU, $\mathrm{BC}^{-}(\mathrm{E})=1-\sup \left(\mathrm{I}_{\mathrm{E}}\right)-\sup \left(\mathrm{I}_{\mathrm{S}}-\mathrm{E}\right)$ and $\mathrm{BC}^{+}(\mathrm{E})=1-\inf \left(\mathrm{I}_{\mathrm{E}}\right)-$ $\inf \left(\mathrm{I}_{\mathrm{S}}-\mathrm{E}\right)$

Lemma 1 (with $\left.\sup \left(\mathrm{I}_{\mathrm{s}}\right)=\inf \left(\mathrm{Is}_{\mathrm{s}}\right)=1\right)$ implies that $\mathrm{BC}^{-}(\mathrm{E}) \leq 0, \mathrm{BC}^{+}(\mathrm{E}) \geq 0$, and hence, $\mathrm{BC}^{-}(\mathrm{E}) \leq \mathrm{BC}^{+}(\mathrm{E})$. Moreover, $\sup \left(\mathrm{I}_{\mathrm{E}}\right)=1-\inf \left(\mathrm{I}_{\mathrm{S}-\mathrm{E}}\right)$ and $\sup \left(\mathrm{I}_{\mathrm{S}-\mathrm{E}}\right)=1$ $-\inf \left(\mathrm{I}_{\mathrm{E}}\right)$ implies $\mathrm{BC}^{+}(\mathrm{E})=-\mathrm{BC}^{-}(\mathrm{E})$.

Result 2. MEU predicts $\mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \geq 0 \geq \mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)$.
Proof: Under MEU, $\mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)=\sup \left(\mathrm{I}_{\mathrm{E}}\right)+\sup \left(\mathrm{I}_{\mathrm{F}}\right)-\sup \left(\mathrm{I}_{\mathrm{E} \cup \mathrm{F}}\right)$ and $\mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)$
$=\inf \left(\mathrm{I}_{\mathrm{E}}\right)+\inf \left(\mathrm{I}_{\mathrm{F}}\right)-\inf \left(\mathrm{I}_{\mathrm{E} \cup \mathrm{F}}\right)$. Hence, according to Lemma 1, $\mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \geq 0$,
$\mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \leq 0$, and, $\mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \geq \mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)$.

Result 3. MEU predicts $\mathrm{UA}^{-}(\mathrm{E}) \leq 0 \leq \mathrm{UA}^{+}(\mathrm{E})$.
Proof: Under MEU, $\mathrm{UA}^{-}\left(\mathrm{E}_{\mathrm{i}}\right)=\inf \left(\mathrm{I}_{\mathrm{E}_{\mathrm{j}}}\right)+\inf \left(\mathrm{I}_{\mathrm{Ek}}\right)-\inf \left(\mathrm{I}_{\mathrm{Ejk}}\right)$ and $\mathrm{UA}^{+}\left(\mathrm{E}_{\mathrm{i}}\right)=$ $\sup \left(\mathrm{I}_{\mathrm{Ej}}\right)+\sup \left(\mathrm{I}_{\mathrm{Ek}}\right)-\sup \left(\mathrm{I}_{\mathrm{Ejk}}\right)$. Hence, according to Lemma 1, $\mathrm{UA}^{-}\left(\mathrm{E}_{\mathrm{i}}\right) \leq 0 \leq$ $\mathrm{UA}^{+}\left(\mathrm{E}_{\mathrm{i}}\right)$.

Result 4. Under MEU, $\mathrm{TA}^{+}=\mathrm{ITA}^{-} \leq 0 \leq \mathrm{TA}^{-}=\mathrm{ITA}^{+}$
Proof: Under MEU, TA ${ }^{+}=\inf \left(\mathrm{I}_{\mathrm{E} 1}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 2}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 3}\right)-1$ and $\mathrm{ITA}^{-}=2-$ $\sup \left(\mathrm{I}_{\mathrm{E} 12}\right)-\sup \left(\mathrm{I}_{\mathrm{E} 23}\right)-\sup \left(\mathrm{I}_{\mathrm{E} 13}\right)=\inf \left(\mathrm{I}_{\mathrm{E} 1}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 2}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 3}\right)-1$ because $\sup \left(\mathrm{I}_{\mathrm{E} 12}\right)=1-\inf \left(\mathrm{I}_{\mathrm{E} 3}\right)$.

Hence, $\mathrm{TA}^{+}=\mathrm{ITA}^{-}$
Moreover, Lemma 1 implies: $1=\inf \left(\mathrm{I}_{\mathrm{S}}\right) \geq \inf \left(\mathrm{I}_{\mathrm{E} 1}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 23}\right) \geq \inf \left(\mathrm{I}_{\mathrm{E} 1}\right)+$ $\inf \left(\mathrm{I}_{\mathrm{E} 2}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 3}\right)$, and therefore, $\mathrm{TA}^{+}=\mathrm{ITA}^{-} \leq 0$.

Similarly, $\mathrm{TA}^{-}=\sup \left(\mathrm{I}_{\mathrm{E} 1}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 2}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 3}\right)-1$ and $\mathrm{ITA}^{-}=2-\inf \left(\mathrm{I}_{\mathrm{E} 12}\right)-$ $\inf \left(\mathrm{I}_{\mathrm{E} 23}\right)-\inf \left(\mathrm{I}_{\mathrm{E} 13}\right)=\sup \left(\mathrm{I}_{\mathrm{E} 1}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 2}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 3}\right)-1$ because $\inf \left(\mathrm{I}_{\mathrm{E} 12}\right)=1-$ $\sup \left(\mathrm{I}_{\mathrm{Ez}}\right)$.

Hence, $\mathrm{TA}^{-}=\mathrm{ITA}^{+}$
Moreover, Lemma 1 implies: $1=\sup \left(\mathrm{I}_{\mathrm{S}}\right) \leq \sup \left(\mathrm{I}_{\mathrm{E} 1}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 23}\right) \leq \sup \left(\mathrm{I}_{\mathrm{E} 1}\right)+$ $\sup \left(\mathrm{I}_{\mathrm{E} 2}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 3}\right)$, and therefore, $0 \leq \mathrm{TA}^{-}=\mathrm{ITA}^{+}$.

All proofs for maxmax follow exactly the same steps, but replacing inf by sup and reciprocally. We omit them for the sake of brevity.

A.2. α-Maxmin

Result 5. Under α-Maxmin with I_{E} not being a singleton, $\mathrm{BC}^{-}(\mathrm{E}) \geq 0 \geq$
$\mathrm{BC}^{+}(\mathrm{E}) \Leftrightarrow \alpha \leq 1 / 2$ and $\mathrm{BC}^{-}(\mathrm{E}) \leq 0 \leq \mathrm{BC}^{+}(\mathrm{E}) \Leftrightarrow \alpha \geq 1 / 2$. Moreover, $\mathrm{BC}^{+}(\mathrm{E})=-$ $\mathrm{BC}^{-}(\mathrm{E})$.
Proof: Under α-Maxmin:
$\mathrm{BC}^{-}(\mathrm{E}) \geq 0$
$\Leftrightarrow \alpha\left(\sup \left(\mathrm{I}_{\mathrm{E}}\right)+\sup \left(\mathrm{I}_{\mathrm{S}}-\mathrm{E}\right)\right)+(1-\alpha)\left(\inf \left(\mathrm{I}_{\mathrm{E}}\right)+\inf \left(\mathrm{I}_{\mathrm{S}}-\mathrm{E}\right)\right) \leq 1$
$\Leftrightarrow(2 \alpha-1)\left(\left(\sup \left(\mathrm{I}_{\mathrm{E}}\right)-\inf \left(\mathrm{I}_{\mathrm{E}}\right)\right) \leq 0\right.$
(because $\sup \left(\mathrm{I}_{\mathrm{S}}-\mathrm{E}\right)=\left(1-\inf \left(\mathrm{I}_{\mathrm{E}}\right)\right)$ and $\left.\inf \left(\mathrm{I}_{\mathrm{S}}-\mathrm{E}\right)=\left(1-\sup \left(\mathrm{I}_{\mathrm{E}}\right)\right)\right)$
$\Leftrightarrow \alpha \geq 1 / 2$ (because I_{E} not being a singleton implies $\sup \left(\mathrm{I}_{\mathrm{E}}\right)>\inf \left(\mathrm{I}_{\mathrm{E}}\right)$).
Reversing all inequalities in the proof demonstrates $\mathrm{BC}^{-}(\mathrm{E}) \leq 0 \Leftrightarrow \alpha \geq 1 / 2$.
Similarly: $\mathrm{BC}^{+}(\mathrm{E}) \geq 0$
$\Leftrightarrow \alpha\left(\inf \left(\mathrm{I}_{\mathrm{E}}\right)+\inf \left(\mathrm{I}_{\mathrm{S}}-\mathrm{E}\right)\right)+(1-\alpha)\left(\sup \left(\mathrm{I}_{\mathrm{E}}\right)+\sup \left(\mathrm{I}_{\mathrm{S}}-\mathrm{E}\right)\right) \leq 1$
$\Leftrightarrow(2 \alpha-1)\left(\left(\inf \left(\mathrm{I}_{\mathrm{E}}\right)-\sup \left(\mathrm{I}_{\mathrm{E}}\right)\right) \leq 0\right.$
(because $\sup \left(\mathrm{I}_{\mathrm{S}-\mathrm{E}}\right)=\left(1-\inf \left(\mathrm{I}_{\mathrm{E}}\right)\right)$ and $\left.\inf \left(\mathrm{I}_{\mathrm{S}}-\mathrm{E}\right)=\left(1-\sup \left(\mathrm{I}_{\mathrm{E}}\right)\right)\right)$
$\Leftrightarrow \alpha \leq 1 / 2$ (because I_{E} not being a singleton implies $\sup \left(\mathrm{I}_{\mathrm{E}}\right)>\inf \left(\mathrm{I}_{\mathrm{E}}\right)$).
Reversing all inequalities in the proof demonstrates $\mathrm{BC}^{+}(\mathrm{E}) \leq 0 \Leftrightarrow \alpha \leq 1 / 2$
Moreover, it follows from $\sup \left(\mathrm{I}_{\mathrm{E}}\right)=1-\inf \left(\mathrm{I}_{\mathrm{S}}-\mathrm{E}\right)$ and $\sup \left(\mathrm{I}_{\mathrm{S}}-\mathrm{E}\right)=1-\inf \left(\mathrm{I}_{\mathrm{E}}\right)$ that $\mathrm{BC}^{+}(\mathrm{E})=-\mathrm{BC}^{-}(\mathrm{E})$.

Result 6. Under α-Maxmin, $\mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \leq \mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \Leftrightarrow \alpha \geq 1 / 2$ and $\mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)$ $\geq \mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \Leftrightarrow \alpha \leq 1 / 2$. No further restriction on sign.

Proof:

Set of priors	$\begin{aligned} & \mathrm{m}_{-\left(\mathrm{I}_{\mathrm{E}}\right)}= \\ & \mathrm{m}^{-}\left(\mathrm{I}_{\mathrm{Ej}}\right) \end{aligned}$	$\mathrm{m}^{-}\left(\mathrm{I}_{\mathrm{Ejj}}\right)$	$\operatorname{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)$	$\begin{aligned} & \hline \mathrm{m}^{+}\left(\mathrm{I}_{\mathrm{E} \mathrm{i}}\right)= \\ & \mathrm{m}^{+}\left(\mathrm{I}_{\mathrm{Ej}}\right) \end{aligned}$	$\mathrm{m}^{+}\left(\mathrm{I}_{\text {Eij }}\right)$	$\mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)$
$\begin{aligned} & \mathrm{I}_{\mathrm{Ei}}=\mathrm{I}_{\mathrm{Ej}}= \\ & {[0 ; 1] \text { and }} \\ & \mathrm{I}_{\mathrm{Ejij}}=[0 ; \\ & 1] \\ & 1] \end{aligned}$		α	$\alpha>0$	($1-\alpha$)	($1-\alpha$)	$\begin{aligned} & (1-\alpha)> \\ & 0 \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{Ei}}=\mathrm{I}_{\mathrm{Ej}}= \\ & {[0 ; 1 / 2]} \\ & \text { and } \mathrm{I}_{\mathrm{Ejj}}= \\ & {[1 / 4 ; 1]} \end{aligned}$	$1 / 2 \alpha$	$\begin{aligned} & \alpha+(1- \\ & \alpha)^{1 / 1 / 4} \end{aligned}$	$\begin{aligned} & -1 / 4(1- \\ & \alpha)<0 \end{aligned}$	$(1-\alpha)^{1 / 2}$	$\begin{aligned} & 1 / 4 \alpha+(1 \\ & -\alpha) \end{aligned}$	$-1 / 4 \alpha<0$
$\begin{aligned} & \mathrm{I}_{\mathrm{Ei}}=\mathrm{I}_{\mathrm{Ej}}= \\ & {[0 ; 1 / 2]} \\ & \text { and } \mathrm{I}_{\mathrm{Ejj}}= \\ & {[1 / 4 ; 3 / 4]} \end{aligned}$	$1 / 2 \alpha$	$\begin{aligned} & \hline 3 / 4 \alpha+(1 \\ & -\alpha)^{1 / 4} \end{aligned}$	$\begin{aligned} & 1 / 2 \alpha-1 / 4 \\ & >0 \text { if } \alpha> \\ & 1 / 2 \\ & <0 \text { if } \alpha< \\ & 1 / 2 \end{aligned}$	$(1-\alpha)^{1 / 2}$	$\begin{aligned} & 1 / 4 \alpha+3 / 4 \\ & (1-\alpha) \end{aligned}$	$\begin{aligned} & 1 / 1 /-1 / 2 \alpha \\ & <0 \text { if } \alpha> \\ & 1 / 2 \\ & >0 \text { if } \alpha< \\ & 1 / 2 \\ & \hline \end{aligned}$

$\mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \geq \mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \Leftrightarrow$
$\alpha\left(\inf \left(\mathrm{I}_{\mathrm{Ei}}\right)+\inf \left(\mathrm{I}_{\mathrm{Ej}}\right)-\inf \left(\mathrm{I}_{\mathrm{Eij}}\right)\right)+(1-\alpha)\left(\sup \left(\mathrm{I}_{\mathrm{Ei}}\right)+\sup \left(\mathrm{I}_{\mathrm{Ej}}\right)-\sup \left(\mathrm{I}_{\mathrm{Ej}}\right)\right) \geq$
$\alpha\left(\sup \left(\mathrm{I}_{\mathrm{Ei}}\right)+\sup \left(\mathrm{I}_{\mathrm{Ej}}\right)-\sup \left(\mathrm{I}_{\mathrm{Eij}}\right)\right)+(1-\alpha)\left(\inf \left(\mathrm{I}_{\mathrm{Ei}}\right)+\inf \left(\mathrm{I}_{\mathrm{Ej}}\right)-\inf \left(\mathrm{I}_{\mathrm{Eij}}\right)\right)$
$\Leftrightarrow(2 \alpha-1)\left(\inf \left(\mathrm{I}_{\mathrm{Ei}}\right)+\inf \left(\mathrm{I}_{\mathrm{Ej}}\right)-\inf \left(\mathrm{I}_{\mathrm{Ejj}}\right)-\sup \left(\mathrm{I}_{\mathrm{Ei}}\right)-\sup \left(\mathrm{I}_{\mathrm{Ej}}\right)+\sup \left(\mathrm{I}_{\mathrm{Eij}}\right)\right) \geq 0$
$\Leftrightarrow(2 \alpha-1) \leq 0$ (by Lemma 1$) \Leftrightarrow \alpha \leq 1 / 2$.
Reversing all inequalities demonstrate $\mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \leq \mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \Leftrightarrow \alpha \geq 1 / 2$.

Result 7. Under α-Maxmin, $\mathrm{UA}^{+}\left(\mathrm{E}_{\mathrm{i}}\right) \leq \mathrm{UA}^{-}\left(\mathrm{E}_{\mathrm{i}}\right) \Leftrightarrow \alpha \leq 1 / 2$ and $\mathrm{UA}^{+}\left(\mathrm{E}_{\mathrm{i}}\right) \geq$ $\mathrm{UA}^{-}\left(\mathrm{E}_{\mathrm{i}}\right) \Leftrightarrow \alpha \geq 1 / 2$. No further restriction on signs.

Proof:

Under α-Maxmin, $\mathrm{UA}^{+}\left(\mathrm{E}_{\mathrm{i}}\right)=1-\inf \left(\mathrm{I}_{\mathrm{Eik}}\right)-\inf \left(\mathrm{I}_{\mathrm{Eij}}\right)+\inf \left(\mathrm{I}_{\mathrm{Ei}}\right)=\sup \left(\mathrm{I}_{\mathrm{Ej}}\right)+$ $\sup \left(\mathrm{I}_{\mathrm{Ek}}\right)-\sup \left(\mathrm{I}_{\mathrm{Ejk}}\right)=\mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{j}}, \mathrm{E}_{\mathrm{k}}\right)$ and $\mathrm{UA}^{-}\left(\mathrm{E}_{\mathrm{i}}\right)=1-\sup \left(\mathrm{I}_{\mathrm{Eik}}\right)-\sup \left(\mathrm{I}_{\mathrm{Ejj}}\right)+$ $\sup \left(\mathrm{I}_{\mathrm{Ei}}\right)=\inf \left(\mathrm{I}_{\mathrm{Ej}}\right)+\inf \left(\mathrm{I}_{\mathrm{Ek}}\right)-\inf \left(\mathrm{I}_{\mathrm{Ejk}}\right)=\mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{j}}, \mathrm{E}_{\mathrm{k}}\right)$. The result follows from the previous one.

Result 8. Under α-Maxmin,
$\alpha \leq 1 / 3 \Rightarrow \mathrm{TA}^{-}=\mathrm{ITA}^{+} \leq 0 \leq \mathrm{ITA}^{-}=\mathrm{TA}^{+}$.
$1 / 3 \leq \alpha \leq 1 / 2 \Rightarrow$ TA $^{-}=$ITA $^{+} \leq$ITA $^{-}=$TA $^{+}$(no further restriction on sign).
$1 / 2 \leq \alpha \leq 2 / 3 \Rightarrow \mathrm{TA}^{+}=\mathrm{ITA}^{-} \leq \mathrm{ITA}^{+}=\mathrm{TA}^{-}$(no further restriction on sign).
$\alpha \geq 2 / 3 \Rightarrow \mathrm{TA}^{+}=\mathrm{ITA}^{-} \leq 0 \leq \mathrm{ITA}^{+}=\mathrm{TA}^{-}$.

Proof:

$$
\begin{aligned}
& \text { Under } \alpha-\operatorname{Maxmin}, \mathrm{TA}^{+}=\alpha\left(\inf \left(\mathrm{I}_{\mathrm{E} 1}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 2}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 3}\right)\right)+(1-\alpha)\left(\sup \left(\mathrm{I}_{\mathrm{E} 1}\right)+\right. \\
& \left.\sup \left(\mathrm{I}_{\mathrm{E} 2}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 3}\right)\right)-1=2-\alpha\left(\sup \left(\mathrm{I}_{\mathrm{E} 12}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 23}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 13}\right)\right)+(1-\alpha) \\
& \left(\inf \left(\mathrm{I}_{\mathrm{E} 12}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 23}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 13}\right)\right)=\mathrm{ITA}^{-} . \\
& \operatorname{Moreover,} \mathrm{TA}^{-}=(1-\alpha)\left(\inf \left(\mathrm{I}_{\mathrm{E} 1}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 2}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 3}\right)\right)+\alpha\left(\sup \left(\mathrm{I}_{\mathrm{E} 1}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 2}\right)\right. \\
& \left.+\sup \left(\mathrm{I}_{\mathrm{E} 3}\right)\right)-1=2-(1-\alpha)\left(\sup \left(\mathrm{I}_{\mathrm{E} 12}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 23}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 13}\right)\right)+\alpha\left(\inf \left(\mathrm{I}_{\mathrm{E} 12}\right)+\right. \\
& \left.\inf \left(\mathrm{I}_{\mathrm{E} 23}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 13}\right)\right)=\mathrm{ITA}^{+} . \\
& \mathrm{TA}^{+}>0 \\
& \Rightarrow \alpha\left(\inf \left(\mathrm{I}_{\mathrm{E} 1}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 2}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 3}\right)\right)+(1-\alpha)\left(\sup \left(\mathrm{I}_{\mathrm{E} 1}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 2}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 3}\right)\right)>1
\end{aligned}
$$

$$
\Rightarrow(3 \alpha-2)\left(\inf \left(\mathrm{I}_{\mathrm{E} 1}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 2}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 3}\right)\right)>(3 \alpha-2)
$$

(Using that Lemma 1 implies $\sup \left(\mathrm{I}_{\mathrm{E} 1}\right) \leq 1-\inf \left(\mathrm{I}_{\mathrm{E} 2}\right)-\inf \left(\mathrm{I}_{\mathrm{E} 3}\right), \sup \left(\mathrm{I}_{\mathrm{E} 2}\right) \leq$
$1-\inf \left(\mathrm{I}_{\mathrm{E} 1}\right)-\inf \left(\mathrm{I}_{\mathrm{E} 3}\right)$, and $\left.\sup \left(\mathrm{I}_{\mathrm{E} 3}\right) \leq 1-\inf \left(\mathrm{I}_{\mathrm{E} 1}\right)-\inf \left(\mathrm{I}_{\mathrm{E} 2}\right)\right)$
$\Rightarrow(3 \alpha-2)<0$ (because $\left.0 \leq \inf \left(\mathrm{I}_{\mathrm{E} 1}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 2}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 3}\right)<1\right)$
$\Rightarrow \alpha<2 / 3$.
$\mathrm{TA}^{+}<0$
$\Rightarrow \alpha\left(\inf \left(\mathrm{I}_{\mathrm{E} 1}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 2}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 3}\right)\right)+(1-\alpha)\left(\sup \left(\mathrm{I}_{\mathrm{E} 1}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 2}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 3}\right)\right)<1$
$\Rightarrow(1-3 \alpha)\left(\sup \left(\mathrm{I}_{\mathrm{E} 1}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 2}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 3}\right)\right)<(1-3 \alpha)$
(Using that Lemma $1 \operatorname{implies} \inf \left(\mathrm{I}_{\mathrm{E} 1}\right) \geq 1-\sup \left(\mathrm{I}_{\mathrm{E} 2}\right)-\sup \left(\mathrm{I}_{\mathrm{E} 3}\right), \inf \left(\mathrm{I}_{\mathrm{E} 2}\right) \geq$
$\left.1-\sup \left(\mathrm{I}_{\mathrm{E} 1}\right)-\sup \left(\mathrm{I}_{\mathrm{E} 3}\right), \operatorname{and} \inf \left(\mathrm{I}_{\mathrm{E} 3}\right) \geq 1-\sup \left(\mathrm{I}_{\mathrm{E} 1}\right)-\sup \left(\mathrm{I}_{\mathrm{E} 2}\right)\right)$
$\Rightarrow(1-3 \alpha)<0$ (because $\left.1 \leq \sup \left(\mathrm{I}_{\mathrm{E} 1}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 2}\right)+\sup \left(\mathrm{I}_{\mathrm{E} 3}\right)\right)$
$\Rightarrow 1 / 3<\alpha$.

Note that TA^{-}is equal to TA^{+}for which we would have exchanged α and (1$\alpha)$. Hence, $\mathrm{TA}^{-}>0 \Rightarrow(1-\alpha)<2 / 3 \Rightarrow 1 / 3<\alpha$ and
$\mathrm{TA}^{-}<0 \Rightarrow 1 / 3<(1-\alpha) \Rightarrow \alpha<2 / 3$.
As a consequence:
$\alpha \geq 2 / 3 \Rightarrow \mathrm{TA}^{+}=\mathrm{ITA}^{-} \leq 0 \leq \mathrm{ITA}^{+}=\mathrm{TA}^{-}$
and
$\alpha \leq 1 / 3 \Rightarrow$ TA $^{-}=\mathrm{ITA}^{+} \leq 0 \leq \mathrm{ITA}^{-}=\mathrm{TA}^{+}$.
Moreover, $\mathrm{TA}^{-}-\mathrm{TA}^{+}=(1-2 \alpha)\left(\inf \left(\mathrm{I}_{\mathrm{E} 1}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 2}\right)+\inf \left(\mathrm{I}_{\mathrm{E} 3}\right)-\sup \left(\mathrm{I}_{\mathrm{E} 1}\right)-\right.$
$\left.\sup \left(\mathrm{I}_{\mathrm{E} 2}\right)-\sup \left(\mathrm{I}_{\mathrm{E} 3}\right)\right)$. Then $\mathrm{TA}^{-} \leq \mathrm{TA}^{+} \Leftrightarrow \alpha \leq 1 / 2$.

Assume $1 / 3<\alpha<2 / 3$:

Set of priors	$\mathrm{m}^{-}\left(\mathrm{I}_{\mathrm{Ei}}\right)$	$\mathrm{TA}^{-}=\mathrm{ITA}^{+}$	$\mathrm{m}^{+}\left(\mathrm{I}_{\mathrm{Ei}}\right)$	$\mathrm{ITA}^{-}=\mathrm{TA}^{+}$
$\mathrm{I}_{\mathrm{Ei}}=[0 ; 1]$ for all i	α	$3 \alpha-1>0$	$(1-\alpha)$	$3(1-\alpha)-1>0$
$\mathrm{I}_{\mathrm{Ei}}=[0 ; 1 / 2]$ for all i	$1 / 2 \alpha$	$3 / 2 \alpha-1<0$	$(1-\alpha) 1 / 2$	$3 / 2(1-\alpha)-1$ <0
$\mathrm{I}_{\mathrm{Ei}}=[0 ; 2 / 3]$ for all i	$2 \alpha / 3$	$2 \alpha-1$	$2(1-\alpha) / 3$	$1-2 \alpha$

A.3. Variational model (VM)

In this section, we consider 3 given outcomes: $x, 0$, and $-x$ (where $x>0$).
We assume (without loss of generality) $U(x)=1, U(0)=0$, and $U(-x)=z$. with $\mathrm{z}<0$.

Result 9. VM predicts $\mathrm{BC}^{-}(\mathrm{E}) \leq 0 \leq \mathrm{BC}^{+}$(E).
Proof: From Eq.(7) in Maccheroni et al. (2006), the set $\{\mathrm{P} \in \Delta$: $\mathrm{c}(\mathrm{P})=0\}$ is nonempty. Let P^{*} be such that $\mathrm{c}\left(\mathrm{P}^{*}\right)=0$. Let P be the probability measure that minimizes, for event $E, P(E) z+c(P)$. Then $P(E) z+c(P) \leq P^{*}(E) z$. Let P^{\prime} be the probability measure that minimizes, for event, $E^{c} P^{\prime}\left(E^{c}\right) z+c\left(P^{\prime}\right)$. Then also $P^{\prime}\left(E^{c}\right) z+c\left(P^{\prime}\right) \leq P^{*}\left(E^{c}\right) z$.

Because P^{*} is a probability measure, $P^{*}(E)+P^{*}\left(E^{c}\right)=1$. Consequently, $P(E) z+c(P)+P^{\prime}\left(E^{c}\right) z+c\left(P^{\prime}\right) \leq z$.

Dividing by z , which is negative, we obtain that the sum of the matching probabilities for E and E^{c} in the loss domain should be at least 1, and thus $\mathrm{BC}^{-}(\mathrm{E}) \leq 0$.

Now, let P be the probability measure that minimizes, for event $\mathrm{E}, \mathrm{P}(\mathrm{E})+\mathrm{c}(\mathrm{P})$.
Then $\mathrm{P}(\mathrm{E})+\mathrm{c}(\mathrm{P}) \leq \mathrm{P}^{*}(\mathrm{E})$. Let P^{\prime} be the probability measure that minimizes, for event $E^{c}, P^{\prime}\left(E^{c}\right)+c\left(P^{\prime}\right)$. Then also $\mathrm{P}^{\prime}\left(\mathrm{E}^{\mathrm{c}}\right)+\mathrm{c}\left(\mathrm{P}^{\prime}\right) \leq \mathrm{P}^{*}\left(\mathrm{E}^{\mathrm{c}}\right)$.

Because P^{*} is a probability measure, $\mathrm{P}^{*}(\mathrm{E})+\mathrm{P}^{*}\left(\mathrm{E}^{\mathrm{c}}\right)=1$. Consequently, $\mathrm{P}(\mathrm{E})+\mathrm{c}(\mathrm{P})+\mathrm{P}^{\prime}\left(\mathrm{E}^{\mathrm{c}}\right)+\mathrm{c}\left(\mathrm{P}^{\prime}\right) \leq 1$.

We thus obtain that the sum of the matching probabilities for E and E^{c} in the gain domain should not be more than 1 ; therefore, $0 \leq \mathrm{BC}^{+}(\mathrm{E})$.

Result 10. VM predicts $\mathrm{TA}^{+}, \mathrm{ITA}^{-} \leq 0 \leq \mathrm{TA}^{-}, \mathrm{ITA}^{+}$
Proof: Let us define $\mathrm{P}^{*} \in\{\mathrm{P} \in \Delta: \mathrm{c}(\mathrm{P})=0\}$.
We must have for any event $\mathrm{E}: \min _{\mathrm{P} \in \Delta}(\mathrm{P}(\mathrm{E})+\mathrm{c}(\mathrm{P})) \leq \mathrm{P}^{*}(\mathrm{E})$, which implies
$\min _{\mathrm{P} \in \Delta}\left(\mathrm{P}\left(\mathrm{E}_{1}\right)+\mathrm{c}(\mathrm{P})\right)+\min _{\mathrm{P} \in \Delta}\left(\mathrm{P}\left(\mathrm{E}_{2}\right)+\mathrm{c}(\mathrm{P})\right)+\min _{\mathrm{P} \in \Delta}\left(\mathrm{P}\left(\mathrm{E}_{3}\right)+\mathrm{c}(\mathrm{P})\right) \leq 1$, and therefore $\mathrm{TA}^{+} \leq 0$.

Similarly, it implies
$\min _{\mathrm{P} \in \Delta}\left(\mathrm{P}\left(\mathrm{E}_{12}\right)+\mathrm{c}(\mathrm{P})\right)+\min _{\mathrm{P} \in \Delta}\left(\mathrm{P}\left(\mathrm{E}_{23}\right)+\mathrm{c}(\mathrm{P})\right)+\min _{\mathrm{P} \in \Delta}\left(\mathrm{P}\left(\mathrm{E}_{13}\right)+\mathrm{c}(\mathrm{P})\right) \leq 2$,
and therefore $0 \leq$ ITA $^{+}$.
For losses, we must have for any event $\mathrm{E}: \min _{\mathrm{P} \in \Delta}(\mathrm{P}(\mathrm{E}) \mathrm{z}+\mathrm{c}(\mathrm{P})) \leq \mathrm{P} *(\mathrm{E}) \mathrm{z}$, which implies
$\left[\min _{P \in \Delta}\left(\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{z}+\mathrm{c}(\mathrm{P})\right)\right] / \mathrm{z}+\left[\min _{\mathrm{P} \in \Delta}\left(\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{z}+\mathrm{c}(\mathrm{P})\right)\right] / \mathrm{z}+\left[\min _{\mathrm{P} \in \Delta}\left(\mathrm{P}\left(\mathrm{E}_{3}\right) \mathrm{z}+\right.\right.$ $\mathrm{c}(\mathrm{P}))] / \mathrm{z} \geq 1$,
and
$\left[\min _{\mathrm{P} \in \Delta}\left(\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{z}+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{z}+\mathrm{c}(\mathrm{P})\right)\right] / \mathrm{z}+\left[\min _{\mathrm{P} \in \Delta}\left(\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{z}+\mathrm{P}\left(\mathrm{E}_{3}\right) \mathrm{z}+\mathrm{c}(\mathrm{P})\right)\right] / \mathrm{z}+$ $\left[\min _{P \in \Delta}\left(P\left(E_{2}\right) z+P\left(E_{3}\right) z+c(P)\right)\right] / z \geq 2$,
and therefore $\mathrm{ITA}^{-} \leq 0 \leq \mathrm{TA}^{-}$.

A.4. The smooth model for ambiguity (KMM)

In this section, we again consider 3 outcomes: $\mathrm{x}, 0$, and $-\mathrm{x}($ where $\mathrm{x}>0$). We also assume that $\mathrm{U}(\mathrm{x})=1, \mathrm{U}(0)=0$, and $\mathrm{U}(-\mathrm{x})=\mathrm{z}$. with $\mathrm{z}<0$.

Lemma 2: If φ is concave, $x_{E} 0 \sim x_{p} 0$ implies $p \leq \int_{\Pi} P(E) d \mu$ and $-x_{E} 0 \sim-x_{q} 0$
implies
$q \geq \int_{\Pi} P(E) d \mu$. If φ is convex, $x_{E} 0 \sim x_{p} 0$ implies $p \geq \int_{\Pi} P(E) d \mu$ and $-x_{E} 0 \sim-x_{q} 0$ implies $\mathrm{q} \leq \int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu$.

Proof:

$\mathrm{x}_{\mathrm{E}} 0 \sim \mathrm{x}_{\mathrm{p}} 0$ implies $\varphi(\mathrm{p})=\int_{\Pi} \varphi(\mathrm{P}(\mathrm{E})) \mathrm{d} \mu$.
Concavity of φ implies $\int_{\Pi} \varphi(\mathrm{P}(\mathrm{E})) \mathrm{d} \mu \leq \varphi\left(\int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu\right)$.
Therefore $\varphi(\mathrm{p}) \leq \varphi\left(\int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu\right)$.
φ is strictly increasing. As a consequence, $p \leq \int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu$.

On the contrary, convexity of φ implies $\int_{\Pi} \varphi(\mathrm{P}(\mathrm{E})) \mathrm{d} \mu \geq \varphi\left(\int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu\right)$.

Therefore $\varphi(\mathrm{p}) \geq \varphi\left(\int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu\right)$.
φ is strictly increasing. As a consequence, $p \geq \int_{\Pi} P(E) d \mu$.

Moreover, $-\mathrm{x}_{\mathrm{E}} 0 \sim-\mathrm{x}_{\mathrm{q}} 0$ implies $\varphi(\mathrm{qz})=\int_{\Pi} \varphi(\mathrm{P}(\mathrm{E}) \mathrm{z}) \mathrm{d} \mu$.
Concavity of φ implies $\int_{\Pi} \varphi(\mathrm{P}(\mathrm{E}) \mathrm{z}) \mathrm{d} \mu \leq \varphi\left(\int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{zd} \mu\right)$.
Therefore $\varphi(\mathrm{qz}) \leq \varphi\left(\int_{\Pi} \mathrm{P}(\mathrm{Ez}) \mathrm{d} \mu\right)$.
φ is strictly increasing. As a consequence, $\mathrm{qz} \leq \int_{\Pi} \mathrm{P}(\mathrm{E}) z d \mu$.
Dividing by $\mathrm{z}<0$ gives $\mathrm{q} \geq \int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu$.

On the contrary, convexity of φ implies $\int_{\Pi} \varphi(\mathrm{P}(\mathrm{E}) \mathrm{z}) \mathrm{d} \mu \geq \varphi\left(\int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{zd} \mu\right)$.
Therefore $\varphi(\mathrm{qz}) \geq \varphi\left(\int_{\Pi} \mathrm{P}(\mathrm{Ez}) \mathrm{d} \mu\right)$.
φ is strictly increasing. As a consequence, $q z \geq \int_{\Pi} P(E) z d \mu$.
Dividing by $\mathrm{z}<0$ gives $\mathrm{q} \leq \int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu$.

Result 11. φ concave implies $\mathrm{BC}^{-}(\mathrm{E}) \leq 0 \leq \mathrm{BC}^{+}(\mathrm{E})$ and φ convex implies
$\mathrm{BC}^{+}(\mathrm{E}) \leq 0 \leq \mathrm{BC}^{-}(\mathrm{E})$.

Proof:

Define $\mathrm{p}, \mathrm{s}, \mathrm{q}$ and r by $\mathrm{x}_{\mathrm{E}} 0 \sim \mathrm{x}_{\mathrm{p}} 0, \mathrm{x}_{\mathrm{E}}{ }^{\mathrm{c}} 0 \sim \mathrm{x}_{\mathrm{s}} 0,-\mathrm{x}_{\mathrm{E}} 0 \sim-\mathrm{x}_{\mathrm{q}} 0$ and $-\mathrm{x}_{\mathrm{E}}{ }^{\mathrm{c}} 0 \sim-\mathrm{x}_{\mathrm{r}} 0$.
According to Lemma 2, φ concave implies $\mathrm{q} \geq \int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu$ and $\mathrm{r} \geq \int_{\Pi}(1-$ $\mathrm{P}(\mathrm{E})) \mathrm{d} \mu$ and therefore implies $\mathrm{q}+\mathrm{r} \geq 1$. It also implies $\mathrm{p} \leq \int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu$ and $\mathrm{s} \leq \int_{\Pi}$ $(1-\mathrm{P}(\mathrm{E})) \mathrm{d} \mu$ and therefore $\mathrm{p}+\mathrm{s} \leq 1 . \mathrm{BC}^{-}(\mathrm{E}) \leq 0 \leq \mathrm{BC}^{+}(\mathrm{E})$ follows.
Similarly, according to Lemma $2, \varphi$ convex implies $q \leq \int_{\Pi} P(E) d \mu$ and $r \leq \int_{\Pi}(1$ $-\mathrm{P}(\mathrm{E})) \mathrm{d} \mu$ and therefore implies $\mathrm{q}+\mathrm{r} \leq 1$. It also implies $\mathrm{p} \geq \int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu$ and $\mathrm{s} \geq$ $\int_{\Pi}(1-\mathrm{P}(\mathrm{E})) \mathrm{d} \mu$ and therefore $\mathrm{p}+\mathrm{s} \geq 1 . \mathrm{BC}^{-}(\mathrm{E}) \geq 0 \geq \mathrm{BC}^{+}(\mathrm{E})$ follows.

Result 12. φ concave implies $\mathrm{TA}^{+}, \mathrm{ITA}^{-} \leq 0 \leq \mathrm{TA}^{-}, \mathrm{ITA}^{+}$but φ convex implies $\mathrm{TA}^{-}, \mathrm{ITA}^{+} \leq 0 \leq \mathrm{TA}^{+}, \mathrm{ITA}^{-}$.

Proof:

If p, q and r are such that $\mathrm{x}_{\mathrm{E}} 0 \sim \mathrm{x}_{\mathrm{p}} 0, \mathrm{x}_{\mathrm{F}} 0 \sim \mathrm{x}_{\mathrm{q}} 0$, and $\mathrm{x}_{\mathrm{G}} 0 \sim \mathrm{x}_{\mathrm{r}} 0$ (with E, F, and G a partition of S), then if φ is convex, Lemma 2 implies that $\mathrm{p}+\mathrm{q}+\mathrm{r} \geq \int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{F}) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{G}) \mathrm{d} \mu=1$, and hence, $\mathrm{TA}^{+} \geq 0$.

But if φ is concave, Lemma 2 implies that
$\mathrm{p}+\mathrm{q}+\mathrm{r} \leq \int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{F}) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{G}) \mathrm{d} \mu=1$, and hence, $\mathrm{TA}^{+} \leq 0$.

If p, q and r are such that $-\mathrm{x}_{\mathrm{E}} 0 \sim-\mathrm{x}_{\mathrm{p}} 0,-\mathrm{x}_{\mathrm{F}} 0 \sim-\mathrm{x}_{\mathrm{q}} 0$, and $-\mathrm{x}_{\mathrm{G}} 0 \sim-\mathrm{x}_{\mathrm{r}} 0$ (with E , F, and G a partition of S), then if φ is convex, Lemma 2 implies that $\mathrm{p}+\mathrm{q}+\mathrm{r} \leq \int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{F}) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{G}) \mathrm{d} \mu=1$, and hence, $\mathrm{TA}^{-} \leq 0$. But if φ is concave, Lemma 2 implies that $\mathrm{p}+\mathrm{q}+\mathrm{r} \geq \int_{\Pi} \mathrm{P}(\mathrm{E}) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{F}) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{G}) \mathrm{d} \mu=1$, and hence, $\mathrm{TA}^{-} \geq 0$.

If p, q and r are such that $\mathrm{x}_{\mathrm{E}}{ }^{\mathrm{c}} 0 \sim \mathrm{x}_{\mathrm{p}} 0, \mathrm{x}_{\mathrm{F}}{ }^{\mathrm{c}} 0 \sim \mathrm{x}_{\mathrm{q}} 0$, and $\mathrm{x}_{\mathrm{G}}{ }^{\mathrm{c}} 0 \sim \mathrm{x}_{\mathrm{r}} 0$ (with E, F, and G a partition of S), then if φ is convex, Lemma 2 implies that $p+q+r \geq \int_{\Pi} P(F \cup G) d \mu+\int_{\Pi} P(E \cup G) d \mu+\int_{\Pi} P(E \cup F) d \mu=2$, and hence, ITA $^{+}$ ≤ 0.
But if φ is concave, Lemma 2 implies that
$\mathrm{p}+\mathrm{q}+\mathrm{r} \leq \int_{\Pi} \mathrm{P}(\mathrm{F} \cup G) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{E} \cup G) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{E} \cup F) \mathrm{d} \mu=2$, and hence, ITA $^{+}$ ≥ 0.

If p, q and r are such that $-\mathrm{x}_{\mathrm{E}}{ }^{\mathrm{c}} 0 \sim-\mathrm{x}_{\mathrm{p}} 0,-\mathrm{x}_{\mathrm{F}}{ }^{\mathrm{c}} 0 \sim-\mathrm{x}_{\mathrm{q}} 0$, and $-\mathrm{x}_{\mathrm{G}}{ }^{\mathrm{c}} 0 \sim-\mathrm{x}_{\mathrm{r}} 0$ (with E, F, and G a partition of S), then if φ is convex, Lemma 2 implies that $\mathrm{p}+\mathrm{q}+\mathrm{r} \leq \int_{\Pi} \mathrm{P}(\mathrm{F} \cup \mathrm{G}) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{E} \cup G) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{E} \cup F) \mathrm{d} \mu=2$, and hence, ITA $^{-}$ ≥ 0.

But if φ is concave, Lemma 2 implies that
$\mathrm{p}+\mathrm{q}+\mathrm{r} \geq \int_{\Pi} \mathrm{P}(\mathrm{F} \cup \mathrm{G}) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{E} \cup G) \mathrm{d} \mu+\int_{\Pi} \mathrm{P}(\mathrm{E} \cup F) \mathrm{d} \mu=2$, and hence, ITA $^{-}$ ≤ 0.

A.5. Choquet expected utility (CEU)

Result 13. CEU predicts $\mathrm{BC}^{-}(\mathrm{E})=\mathrm{BC}^{+}(\mathrm{E})$. No further restrictions on sign.
Proof: Let $\mathrm{p}, \mathrm{s}, \mathrm{q}$ and r be defined by $\mathrm{x}_{\mathrm{E}} 0 \sim \mathrm{x}_{\mathrm{p}} 0, \mathrm{x}_{\mathrm{E}}{ }^{\mathrm{c}} 0 \sim \mathrm{x}_{\mathrm{s}} 0,-\mathrm{x}_{\mathrm{E}} 0 \sim-\mathrm{x}_{\mathrm{q}} 0$ and $-\mathrm{x}_{\mathrm{E}}{ }^{\mathrm{c}} 0 \sim-\mathrm{x}_{\mathrm{r}} 0$. Under CEU, this implies $\mathrm{p}=\mathrm{w}^{-1}(\mathrm{~W}(\mathrm{E})), \mathrm{s}=\mathrm{w}^{-1}\left(\mathrm{~W}\left(\mathrm{E}^{\mathrm{c}}\right)\right)$, $r=w^{-1}(W(E)), q=w^{-1}\left(W\left(E^{c}\right)\right)$. Therefore $q+r-1=p+s-1$. It is straightforward that with no further conditions on W and w^{-1} than that they are increasing, $\mathrm{BC}^{-}(\mathrm{E})$ and $\mathrm{BC}^{+}(\mathrm{E})$ can be of any sign.

Result 14. CEU predicts $\mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)+\mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \leq 1$. No further restriction on signs.

Proof:

$\mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)=\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{i}}\right)+\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{j}}\right)-\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{ij}}\right)$ and $\mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)=1-$ $w^{-1} \circ W\left(E_{k j}\right)-w^{-1} \circ W\left(E_{i k}\right)+w^{-1} \circ W\left(E_{k}\right)($ for $k \neq i, j)$.
The only property that we can use is that $\mathrm{w}^{-1} \circ \mathrm{~W}$ is increasing. As a consequence, there is no restriction on the sign of $\mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)$ and $\mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)$ but:
$\mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)+\mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)=\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{i}}\right)+\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{j}}\right)-\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{ij}}\right)+1-$
$w^{-1} \circ W\left(E_{k j}\right)-w^{-1} \circ W\left(E_{i k}\right)+w^{-1} \circ W\left(E_{k}\right)=1-\left(w^{-1} \circ W\left(E_{i j}\right)-w^{-1} \circ W\left(E_{i}\right)+\right.$
$\left.\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{kj}}\right)-\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{j}}\right)+\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{ik}}\right)-\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{k}}\right)\right) \leq 1$ 。

Result 15. CEU predicts $\mathrm{UA}^{+}\left(\mathrm{E}_{\mathrm{i}}\right)+\mathrm{UA}^{-}\left(\mathrm{E}_{\mathrm{i}}\right) \leq 1$. No further restriction on signs.

Proof:

$\mathrm{UA}^{+}\left(\mathrm{E}_{\mathrm{k}}\right)=1-\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{kj}}\right)-\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{ik}}\right)+\mathrm{w}^{-1} \circ \mathrm{~W}\left(\mathrm{E}_{\mathrm{k}}\right)$ and $\mathrm{UA}^{-}\left(\mathrm{E}_{\mathrm{k}}\right)=$ $w^{-1} \circ W\left(E_{i}\right)+w^{-1} \circ W\left(E_{j}\right)-w^{-1} \circ W\left(E_{i j}\right)($ for $k \neq i, j)$.
From the preceding result, we conclude that there is no restriction on the sign of $\mathrm{UA}^{+}\left(\mathrm{E}_{\mathrm{i}}\right)$ and $\mathrm{UA}^{-}\left(\mathrm{E}_{\mathrm{i}}\right)$ but $\mathrm{UA}^{+}\left(\mathrm{E}_{\mathrm{i}}\right)+\mathrm{UA}^{-}\left(\mathrm{E}_{\mathrm{i}}\right) \leq 1$.

Result 16. CEU implies TA ${ }^{+}=\mathrm{ITA}^{-}, \mathrm{TA}^{-}=\mathrm{ITA}^{+}$, and $\mathrm{TA}^{+}+\mathrm{ITA}^{+} \leq 1$
Proof: Under CEU, $\mathrm{x}_{\mathrm{E} 1} 0 \sim \mathrm{x}_{\mathrm{p} 1} 0, \mathrm{x}_{\mathrm{E} 2} 0 \sim \mathrm{x}_{\mathrm{p} 2} 0, \mathrm{x}_{\mathrm{E} 3} 0 \sim \mathrm{x}_{\mathrm{p} 3} 0,-\mathrm{x}_{\mathrm{E} 23} 0 \sim-\mathrm{x}_{\mathrm{q} 1} 0$,
$-\mathrm{x}_{\mathrm{E} 13} 0 \sim-\mathrm{x}_{\mathrm{q} 2} 0,-\mathrm{x}_{\mathrm{E} 12} 0 \sim-\mathrm{x}_{\mathrm{q} 3} 0$, imply $\mathrm{p}_{\mathrm{i}}=1-\mathrm{q}_{\mathrm{i}}=\mathrm{w}^{-1}\left(\mathrm{~W}\left(\mathrm{E}_{\mathrm{i}}\right)\right)$ for $\mathrm{i} \in\{1,2,3\}$.
Therefore $\mathrm{TA}^{+}=$ITA $^{-}$.
Similarly, $-\mathrm{x}_{\mathrm{E} 1} 0 \sim-\mathrm{x}_{\mathrm{p} 1} 0,-\mathrm{x}_{\mathrm{E} 2} 0 \sim-\mathrm{x}_{\mathrm{p} 2} 0,-\mathrm{x}_{\mathrm{E} 3} 0 \sim-\mathrm{x}_{\mathrm{p} 3} 0, \mathrm{x}_{\mathrm{E} 23} 0 \sim \mathrm{x}_{\mathrm{q} 1} 0, \mathrm{x}_{\mathrm{E} 13} 0 \sim$ $\mathrm{x}_{\mathrm{q} 2} 0, \mathrm{x}_{\mathrm{E} 12} 0 \sim \mathrm{x}_{\mathrm{q} 3} 0$, imply $\mathrm{p}_{\mathrm{i}}=1-\mathrm{q}_{\mathrm{i}}=\mathrm{w}^{-1}\left(\mathrm{~W}\left(\mathrm{~S}-\mathrm{E}_{\mathrm{i}}\right)\right)$ for $\mathrm{i} \in\{1,2,3\}$.
Therefore $\mathrm{TA}^{-}=\mathrm{ITA}^{+}$.
Moreover, $\mathrm{TA}^{+}+\mathrm{ITA}^{+}=1-\left(\mathrm{w}^{-1}\left(\mathrm{~W}\left(\mathrm{E}_{12}\right)\right)-\mathrm{w}^{-1}\left(\mathrm{~W}\left(\mathrm{E}_{1}\right)\right)+\mathrm{w}^{-1}\left(\mathrm{~W}\left(\mathrm{E}_{23}\right)\right)-\right.$ $\left.\mathrm{w}^{-1}\left(\mathrm{~W}\left(\mathrm{E}_{2}\right)\right)+\mathrm{w}^{-1}\left(\mathrm{~W}\left(\mathrm{E}_{13}\right)\right)-\mathrm{w}^{-1}\left(\mathrm{~W}\left(\mathrm{E}_{3}\right)\right)\right) \leq 1$ (because $\mathrm{w}^{-1} \circ \mathrm{~W}$ is increasing). It is straightforward that this only property of $\mathrm{w}^{-1} \circ \mathrm{~W}$ does not restrict the sign of TA^{+}and ITA^{+}any further.

A.6. Prospect theory (PT)

Result 17. PT does not predict anything about $\mathrm{BC}^{-}(\mathrm{E})$ and $\mathrm{BC}^{+}(\mathrm{E})$.
$\mathrm{BC}^{+}(\mathrm{E})=\left(\mathrm{w}^{+}\right)^{-1}\left(\mathrm{~W}^{+}(\mathrm{E})\right)+\left(\mathrm{w}^{+}\right)^{-1}\left(\mathrm{~W}^{+}(\mathrm{S}-\mathrm{E})\right)$ and
$\mathrm{BC}^{-}(\mathrm{E})=\left(\mathrm{w}^{-}\right)^{-1}\left(\mathrm{~W}^{-}(\mathrm{E})\right)+\left(\mathrm{w}^{-}\right)^{-1}\left(\mathrm{~W}^{-}(\mathrm{S}-\mathrm{E})\right)$.
Proof: Ambiguity-generated insensitivity does not predict anything about the relationship between the weight assign to an event and to its complement. And PT does not assume any special link between the weighting functions for losses than for gains.

Result 18. PT with ambiguity-generated insensitivity predicts that $\mathrm{LA}^{+}(\mathrm{Ei}, \mathrm{Ej})$, $\mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right), \mathrm{UA}^{+}\left(\mathrm{E}_{\mathrm{i}}\right)$, and $\mathrm{UA}^{-}\left(\mathrm{E}_{\mathrm{i}}\right)$ are all positive but does not predict any specific link between the positive indexes and the respective indexes for losses.

Proof: Recall that a decision maker exhibits ambiguity-generated insensitivity if for $\mathrm{s}=+,-$, (i) $\mathrm{W}^{s}\left(\mathrm{E}_{\mathrm{i}}\right)=\mathrm{w}^{\mathrm{s}}\left(\mathrm{p}_{\mathrm{i}}\right)$ and $\mathrm{W}^{\mathrm{s}}\left(\mathrm{E}_{\mathrm{j}}\right)=\mathrm{w}^{\mathrm{s}}\left(\mathrm{q}_{\mathrm{j}}\right)$ imply that $\mathrm{W}^{\mathrm{s}}\left(\mathrm{E}_{\mathrm{ij}}\right) \leq$ $w^{s}\left(p_{i}+p_{j}\right)$ provided that $w^{s}\left(p_{i}+p_{j}\right)$ is bounded away from 1 , and (ii) $W^{s}\left(E_{i j}\right)=$ $w^{s}\left(p_{i j}\right)$ and $W^{s}\left(E_{i k}\right)=w^{s}\left(p_{i k}\right)$ imply that $W^{s}\left(E_{i}\right) \geq w^{s}\left(p_{i j}+p_{i k}-1\right)$ provided that $W^{s}\left(E_{i}\right)$ is bounded away from 0 .

The following proof is the same for all sign s.
From (i), we can derive that the matching probabilities for E_{i} and E_{j} are p_{i} and p_{j} respectively but the matching probability $p_{i j}$ of $E_{i j}$ must be less than $p_{i}+p_{j}$ (because $\left.W^{s}\left(E_{i j}\right) \leq w^{s}\left(p_{i}+p_{j}\right)\right)$. It follows that LA ${ }^{\mathrm{s}}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)=\mathrm{p}_{\mathrm{i}}+\mathrm{p}_{\mathrm{j}}-\mathrm{p}_{\mathrm{ij}}$ must be positive.
From (ii), we can derive that the matching probabilities of E_{ij} and E_{ik} are p_{ij} and $p_{i k}$ respectively (for any sign s) but the matching probability p_{i} for E_{i} must be more than $p_{i j}+p_{i k}-1$ (because $W^{s}\left(E_{i}\right) \geq w^{s}\left(p_{i j}+p_{i k}-1\right)$). It follows that $\mathrm{UA}^{\mathrm{s}}\left(\mathrm{E}_{\mathrm{i}}\right)=1-\mathrm{p}_{\mathrm{ij}}-\mathrm{p}_{\mathrm{ik}}+\mathrm{p}_{\mathrm{i}} \geq 0$.

Result 19. PT with ambiguity-generated insensitivity predicts that $0 \leq \mathrm{TA}^{+}+$ $\mathrm{ITA}^{+} \leq 1$ and $0 \leq \mathrm{ITA}^{-}+\mathrm{TA}^{-} \leq 1$ but does not predict any specific link between the positive indexes and the respective indexes for losses.

Proof: TA $^{\mathrm{s}}+$ ITA $^{\mathrm{s}}=\mathrm{p}_{\mathrm{i}}+\mathrm{p}_{\mathrm{j}}+\mathrm{p}_{\mathrm{k}}-1+2-\mathrm{p}_{\mathrm{ij}}-\mathrm{p}_{\mathrm{ik}}-\mathrm{p}_{\mathrm{jk}} \geq \mathrm{p}_{\mathrm{k}}+1-\mathrm{p}_{\mathrm{ik}}-\mathrm{p}_{\mathrm{jk}} \geq 0$ where the first inequality comes from (i) and the second from (ii). Moreover, the increasingness of W^{s} and w^{s} implies TA ${ }^{s}+$ ITA $^{s}=1+p_{i}+p_{j}+$ $\mathrm{p}_{\mathrm{k}}-\mathrm{p}_{\mathrm{ij}}-\mathrm{p}_{\mathrm{ik}}-\mathrm{p}_{\mathrm{jk}} \leq 1$.

A.7. Vector expected utility (VEU)

We consider two nonzero outcomes x and -x and we take $\mathrm{U}(0)=0, \mathrm{U}(\mathrm{x})=1$, and $\mathrm{U}(-\mathrm{x})=\mathrm{z}$ with $\mathrm{z}<0$. Under VEU, $\mathrm{x}_{\mathrm{E}} 0 \sim \mathrm{x}_{\mathrm{p}} 0$ and $-\mathrm{x}_{\mathrm{E}} 0 \sim-\mathrm{x}_{\mathrm{q}} 0$ imply $\mathrm{p}=$ $\mathrm{P}(\mathrm{E})+\mathrm{A}\left(\left(\zeta_{i}(\mathrm{E}) \mathrm{P}(\mathrm{E})\right)_{0 \leq i \leq n}\right)$ and $\mathrm{q}=\mathrm{P}(\mathrm{E})+\mathrm{A}\left(\left(\zeta_{i}(\mathrm{E}) \mathrm{P}(\mathrm{E}) \mathrm{z}\right)_{0 \leq i<n}\right) / \mathrm{z}$ respectively.

Result 20. If A is negative, then $\mathrm{BC}^{-}(\mathrm{E}) \leq 0 \leq \mathrm{BC}^{+}(\mathrm{E})$. If A is positive, then $\mathrm{BC}^{+}(\mathrm{E}) \leq 0 \leq \mathrm{BC}^{-}(\mathrm{E})$.

Proof: Under VEU, $\mathrm{BC}^{-}(\mathrm{E})=-\mathrm{A}\left(\left(\zeta_{\mathrm{i}}(\mathrm{E}) \mathrm{P}(\mathrm{E}) \mathrm{z}\right)_{0 \leq i<\mathrm{n}}\right) / \mathrm{z}-$
$\mathrm{A}\left(\left(\zeta_{\mathrm{i}}(\mathrm{E})(1-\mathrm{P}(\mathrm{E})) \mathrm{z}\right)_{0 \leq i<n}\right) / \mathrm{z}$.
$\mathrm{BC}^{+}(\mathrm{E})=-\mathrm{A}\left(\left(\zeta_{i}(\mathrm{E}) \mathrm{P}(\mathrm{E}) \mathrm{z}\right)_{0 \leq i<n}\right)-\mathrm{A}\left(\left(\zeta_{\mathrm{i}}(\mathrm{E})(1-\mathrm{P}(\mathrm{E})) \mathrm{z}\right)_{0 \leq i<\mathrm{n}}\right)$.

Result 21. If A is negative, then $\mathrm{TA}^{+}, \mathrm{ITA}^{-} \leq 0 \leq \mathrm{TA}^{-}, \mathrm{ITA}^{+}$. If A is positive, then $\mathrm{TA}^{-}, \mathrm{ITA}^{+} \leq 0 \leq \mathrm{TA}^{+}$, ITA^{-}.
Proof: Consider a partition of S into $\mathrm{E}_{1}, \mathrm{E}_{2}$, and E_{3}. Under VEU,

$$
\begin{aligned}
& \mathrm{TA}^{+}=\mathrm{A}\left(\left(\zeta_{i}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{E}_{1}\right)\right)_{0 \leq i<n}\right)+\mathrm{A}\left(\left(\zeta_{i}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{E}_{2}\right)\right)_{0 \leq i<\mathrm{n}}\right)+\mathrm{A}\left(\left(\zeta_{i}\left(\mathrm{E}_{3}\right) \mathrm{P}\left(\mathrm{E}_{3}\right)\right)_{0 \leq i<n}\right) . \\
& \mathrm{TA}=\mathrm{A}\left(\left(\zeta_{\mathrm{i}}\left(\mathrm{E}_{1}\right)\left(1-\mathrm{P}\left(\mathrm{E}_{1}\right)\right) \mathrm{z}\right)_{0 \leq i<n}\right) / \mathrm{z}+\mathrm{A}\left(\left(\zeta_{j}\left(\mathrm{E}_{2}\right)\left(1-\mathrm{P}\left(\mathrm{E}_{2}\right)\right) \mathrm{z}\right)_{0 \leq i<\mathrm{n}}\right) / \mathrm{z} \\
& +\mathrm{A}\left(\left(\zeta_{i}\left(\mathrm{E}_{3}\right)\left(1-\mathrm{P}\left(\mathrm{E}_{3}\right)\right) \mathrm{z}\right)_{0 \leq i<n}\right) / \mathrm{z} . \\
& \mathrm{ITA}^{+}=-\mathrm{A}\left(\left(\zeta_{i}\left(\mathrm{E}_{1}\right)\left(1-\mathrm{P}\left(\mathrm{E}_{1}\right)\right)\right)_{0 \leq i<\mathrm{n}}\right)-\mathrm{A}\left(\left(\zeta_{i}\left(\mathrm{E}_{2}\right)\left(1-\mathrm{P}\left(\mathrm{E}_{2}\right)\right)\right)_{0 \leq i<\mathrm{n}}\right)- \\
& \mathrm{A}\left(\left(\zeta_{i}\left(\mathrm{E}_{3}\right)\left(1-\mathrm{P}\left(\mathrm{E}_{3}\right)\right)\right)_{0 \leq i<\mathrm{n}}\right) \\
& \mathrm{ITA}^{-}=-\mathrm{A}\left(\left(\zeta_{i}\left(\mathrm{E}_{1}\right)\left(1-\mathrm{P}\left(\mathrm{E}_{1}\right)\right) \mathrm{z}\right)_{0 \leq i<\mathrm{n}}\right) / \mathrm{z}-\mathrm{A}\left(\left(\zeta_{i}\left(\mathrm{E}_{2}\right)\left(1-\mathrm{P}\left(\mathrm{E}_{2}\right)\right) \mathrm{z}\right)_{0 \leq i<n}\right) / \mathrm{z} \\
& -\mathrm{A}\left(\left(\zeta_{i}\left(\mathrm{E}_{3}\right)\left(1-\mathrm{P}\left(\mathrm{E}_{3}\right)\right) \mathrm{z}\right)_{0 \leq i<\mathrm{n}}\right) / \mathrm{z} .
\end{aligned}
$$

The result follows.

A.8. Additivity indexes

Result 22. Violations of any 4 of the 5 types of additivity do not imply a violation of the $5^{\text {th }}$ one.

Proof: Let us consider a nonzero outcome x and a partition of S in 3 events E_{1}, E_{2}, E_{3}. The third column of Table A. 1 is an example of an additive
situation. The others are examples of violations of 4 types of additivity, not implying a violation of the $5^{\text {th }}$ one.

Matching	$\mathbf{m}\left(\mathbf{E}_{\mathbf{1}}, \mathbf{x}\right)$	$1 / 3$	$2 / 5$	$1 / 5$	$3 / 5$	$1 / 3$	$1 / 2$
	$\mathbf{m}\left(\mathbf{E}_{\mathbf{2}}, \mathbf{x}\right)$	$1 / 3$	$2 / 5$	$1 / 5$	$3 / 5$	$1 / 3$	$1 / 2$
	$\mathbf{m}\left(\mathbf{E}_{\mathbf{3}}, \mathbf{x}\right)$	$1 / 3$	$2 / 5$	$1 / 5$	$3 / 5$	$1 / 3$	$1 / 2$
	$\mathbf{m}\left(\mathbf{E}_{\mathbf{1}}, \mathbf{x}\right)$	$2 / 3$	$3 / 5$	$2 / 5$	$4 / 5$	$1 / 2$	$2 / 3$
	$\mathbf{m}\left(\mathbf{E}_{\mathbf{1 3}}, \mathbf{x}\right)$	$2 / 3$	$3 / 5$	$2 / 5$	$4 / 5$	$1 / 2$	$2 / 3$
	$\mathbf{m}\left(\mathbf{E}_{\mathbf{2}}, \mathbf{x}\right)$	$2 / 3$	$3 / 5$	$2 / 5$	$4 / 5$	$1 / 2$	$2 / 3$
Binary	$\mathbf{B C}\left(\mathbf{E}_{\mathbf{1}}\right)$	$\mathbf{0}$	$\mathbf{0}$	$2 / 5$	$-2 / 5$	$1 / 6$	$-1 / 6$
	$\mathbf{B C}\left(\mathbf{E}_{\mathbf{2}}\right)$	$\mathbf{0}$	$\mathbf{0}$	$2 / 5$	$-2 / 5$	$1 / 6$	$-1 / 6$
	$\mathbf{B C}\left(\mathbf{E}_{\mathbf{3}}\right)$	$\mathbf{0}$	$\mathbf{0}$	$2 / 5$	$-2 / 5$	$1 / 6$	$-1 / 6$
Lower additivity	$\mathbf{L A}\left(\mathbf{E}_{\mathbf{1}}, \mathbf{E}_{\mathbf{2}}\right)$	$\mathbf{0}$	$1 / 5$	$\mathbf{0}$	$2 / 5$	$1 / 6$	$1 / 3$
	$\mathbf{L A}\left(\mathbf{E}_{\mathbf{1}}, \mathbf{E}_{\mathbf{3}}\right)$	$\mathbf{0}$	$1 / 5$	$\mathbf{0}$	$2 / 5$	$1 / 6$	$1 / 3$
	$\mathbf{L A}\left(\mathbf{E}_{\mathbf{2}}, \mathbf{E}_{\mathbf{3}}\right)$	$\mathbf{0}$	$1 / 5$	$\mathbf{0}$	$2 / 5$	$1 / 6$	$1 / 3$
Upper additivity	$\mathbf{U A}\left(\mathbf{E}_{\mathbf{1}}\right)$	$\mathbf{0}$	$1 / 5$	$2 / 5$	$\mathbf{0}$	$1 / 3$	$1 / 6$
	$\mathbf{U A}\left(\mathbf{E}_{\mathbf{2}}\right)$	$\mathbf{0}$	$1 / 5$	$2 / 5$	$\mathbf{0}$	$1 / 3$	$1 / 6$
	$\mathbf{U A}\left(\mathbf{E}_{\mathbf{3}}\right)$	$\mathbf{0}$	$1 / 5$	$2 / 5$	$\mathbf{0}$	$1 / 3$	$1 / 6$
Direct and indirect	$\mathbf{T A}$	$\mathbf{0}$	$1 / 5$	$-2 / 5$	$4 / 5$	$\mathbf{0}$	$1 / 2$
ternary additivity	$\mathbf{I T A}$	$\mathbf{0}$	$1 / 5$	$4 / 5$	$-2 / 5$	$1 / 2$	$\mathbf{0}$

Table A.1: Example of violations of none or all but one types of additivity

B - Proportion of subjects satisfying each prediction

	Experiment 1						Experiment 2					
	AEX			SENSEX			AEX			TOP40		
$\begin{aligned} & \mathrm{BC}^{-}(\mathrm{E})= \\ & \mathrm{BC}^{+}(\mathrm{E})=0 \end{aligned}$	$\mathrm{E}_{1}: 49 \%$	$\mathrm{E}_{2}: 46 \%$	$\mathrm{E}_{3}: 32 \%$	$\mathrm{E}_{1}: 49 \%$	$\mathrm{E}_{2}: 43 \%$	$\mathrm{E}_{3}: 41 \%$	$\mathrm{E}_{1}: 52 \%$	$\mathrm{E}_{2}: 45 \%$	$\mathrm{E}_{3}: 53 \%$	$\mathrm{E}_{1}: 45 \%$	$\mathrm{E}_{2}: 37 \%$	$\mathrm{E}_{3}: 54 \%$
$\begin{aligned} & \mathrm{BC}^{-}(\mathrm{E}) \leq 0 \leq \\ & \mathrm{BC}^{+}(\mathrm{E}) \end{aligned}$	$\mathrm{E}_{1}: 62 \%$	$\mathrm{E}_{2}: 62 \%$	$\mathrm{E}_{3}: 51 \%$	$\mathrm{E}_{1}: 62 \%$	$\mathrm{E}_{2}: 54 \%$	$\mathrm{E}_{3}: 51 \%$	$\mathrm{E}_{1}: 59 \%$	$\mathrm{E}_{2}: 52 \%$	$\mathrm{E}_{3}: 61 \%$	$\mathrm{E}_{1}: 56 \%$	$\mathrm{E}_{2}: 50 \%$	$\mathrm{E}_{3}: 59 \%$
$\begin{aligned} & \mathrm{BC}^{-}(\mathrm{E}) \geq 0 \geq \\ & \mathrm{BC}^{+}(\mathrm{E}) \end{aligned}$	$\mathrm{E}_{1}: 76 \%$	$\mathrm{E}_{2}: 81 \%$	$\mathrm{E}_{3}: 68 \%$	E_{1} : 78\%	$\mathrm{E}_{2}: 78 \%$	$\mathrm{E}_{3}: 78 \%$	$\mathrm{E}_{1}: 84 \%$	$\mathrm{E}_{2}: 82 \%$	$\mathrm{E}_{3}: 84 \%$	$\mathrm{E}_{1}: 83 \%$	$\mathrm{E}_{2}: 79 \%$	$\mathrm{E}_{3}: 86 \%$
$\begin{aligned} & \mathrm{BC}^{-}(\mathrm{E})= \\ & \mathrm{BC}^{+}(\mathrm{E}) \end{aligned}$	$\mathrm{E}_{1}: 76 \%$	$\mathrm{E}_{2}: 78 \%$	$\mathrm{E}_{3}: 65 \%$	E_{1} : 78\%	$\mathrm{E}_{2}: 78 \%$	$\mathrm{E}_{3}: 73 \%$	$\mathrm{E}_{1}: 86 \%$	$\mathrm{E}_{2}: 79 \%$	$\mathrm{E}_{3}: 80 \%$	$\mathrm{E}_{1}: 72 \%$	$\mathrm{E}_{2}: 76 \%$	$\mathrm{E}_{3}: 84 \%$
$\begin{aligned} & \hline-\mathrm{BC}^{-}(\mathrm{E})= \\ & \mathrm{BC}^{+}(\mathrm{E}) \end{aligned}$	$\mathrm{E}_{1}: 81 \%$	$\mathrm{E}_{2}: 76 \%$	$\mathrm{E}_{3}: 70 \%$	$\mathrm{E}_{1}: 68 \%$	$\mathrm{E}_{2}: 70 \%$	$\mathrm{E}_{3}: 68 \%$	$\mathrm{E}_{1}: 85 \%$	$\mathrm{E}_{2}: 78 \%$	$\mathrm{E}_{3}: 82 \%$	$\mathrm{E}_{1}: 86 \%$	$\mathrm{E}_{2}: 77 \%$	$\mathrm{E}_{3}: 82 \%$
$\begin{aligned} & \mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)= \\ & \mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)=0 \end{aligned}$	$\mathrm{E}_{12}: 27 \%$	$\mathrm{E}_{23}: 24 \%$	$\mathrm{E}_{13}: 24 \%$	$\mathrm{E}_{12}: 24 \%$	$\mathrm{E}_{23}: 24 \%$	$\mathrm{E}_{13}: 22 \%$	$\mathrm{E}_{12}: 26 \%$	$\mathrm{E}_{23}: 22 \%$	$\mathrm{E}_{13}: 29 \%$	$\mathrm{E}_{12}: 30 \%$	$\mathrm{E}_{23}: 28 \%$	$\mathrm{E}_{13}: 28 \%$
$\begin{aligned} & \mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \geq 0 \\ & \geq \mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{i}}\right) \end{aligned}$	E_{12} : 46%	$\mathrm{E}_{23}: 49 \%$	$\mathrm{E}_{13}: 51 \%$	$\mathrm{E}_{12}: 51 \%$	$\mathrm{E}_{23}: 46 \%$	$\mathrm{E}_{13}: 46 \%$	$\mathrm{E}_{12}: 49 \%$	$\mathrm{E}_{23}: 40 \%$	$\mathrm{E}_{13}: 47 \%$	$\mathrm{E}_{12}: 47 \%$	$\mathrm{E}_{23}: 50 \%$	$\mathrm{E}_{13}: 41 \%$
$\begin{aligned} & \mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \geq \\ & \mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{i}}\right) \\ & \hline \end{aligned}$	$\mathrm{E}_{12}: 97 \%$	$\mathrm{E}_{23}: 92 \%$	$\mathrm{E}_{13}: 97 \%$	$\mathrm{E}_{12}: 97 \%$	$\mathrm{E}_{23}: 95 \%$	$\mathrm{E}_{13}: 92 \%$	$\mathrm{E}_{12}: 99 \%$	E_{23} : 96%	$\mathrm{E}_{13}: 97 \%$	$\mathrm{E}_{12}: 97 \%$	$\mathrm{E}_{23}: 96 \%$	$\mathrm{E}_{13}: 95 \%$
$\begin{aligned} & \mathrm{LA}^{-}(\mathrm{Ei}, \mathrm{Ej}) \leq \\ & \mathrm{LA}^{+}(\mathrm{Ei}, \mathrm{Ej}) \end{aligned}$	$\mathrm{E}_{12}: 76 \%$	$\mathrm{E}_{23}: 76 \%$	$\mathrm{E}_{13}: 86 \%$	$\mathrm{E}_{12}: 76 \%$	$\mathrm{E}_{23}: 81 \%$	$\mathrm{E}_{13}: 81 \%$	$\mathrm{E}_{12}: 79 \%$	$\mathrm{E}_{23}: 80 \%$	$\mathrm{E}_{13}: 77 \%$	$\mathrm{E}_{12}: 81 \%$	$\mathrm{E}_{23}: 83 \%$	$\mathrm{E}_{13}: 79 \%$
$\begin{aligned} & \mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \leq 0 \\ & \leq \mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \end{aligned}$	E_{12} : 46\%	$\mathrm{E}_{23}: 46 \%$	$\mathrm{E}_{13}: 49 \%$	$\mathrm{E}_{12}: 41 \%$	$\mathrm{E}_{23}: 43 \%$	$\mathrm{E}_{13}: 43 \%$	$\mathrm{E}_{12}: 42 \%$	$\mathrm{E}_{23}: 51 \%$	$\mathrm{E}_{13}: 48 \%$	$\mathrm{E}_{12}: 51 \%$	$\mathrm{E}_{23}: 47 \%$	$\mathrm{E}_{13}: 47 \%$
$\begin{aligned} & \mathrm{LA}^{+(}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right)+ \\ & \mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \leq 1 \end{aligned}$	$\mathrm{E}_{12}: 97 \%$	$\mathrm{E}_{23}: 95 \%$	$\mathrm{E}_{13}: 100 \%$	$\mathrm{E}_{12}: 95 \%$	$\mathrm{E}_{23}: 100 \%$	$\mathrm{E}_{13}: 97 \%$	$\mathrm{E}_{12}: 99 \%$	$\mathrm{E}_{23}: 100 \%$	$\mathrm{E}_{13}: 100 \%$	$\mathrm{E}_{12}: 100 \%$	$\mathrm{E}_{23}: 100 \%$	$\mathrm{E}_{13}: 99 \%$
$\begin{aligned} & \mathrm{LA}^{+}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \\ & \mathrm{LA}^{-}\left(\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right) \geq 0 \\ & \hline \end{aligned}$	$\mathrm{E}_{12}: 100 \%$	$\mathrm{E}_{23}: 95 \%$	$\mathrm{E}_{13}: 95 \%$	$\mathrm{E}_{12}: 100 \%$	$\mathrm{E}_{23}: 95 \%$	$\mathrm{E}_{13}: 100 \%$	$\mathrm{E}_{12}: 100 \%$	E_{23} : 99\%	$\mathrm{E}_{13}: 99 \%$	$\mathrm{E}_{12}: 98 \%$	$\mathrm{E}_{23}: 98 \%$	$\mathrm{E}_{13}: 98 \%$
$\begin{aligned} & \mathrm{UA}^{-}(\mathrm{E})= \\ & \mathrm{UA}^{+}(\mathrm{E})=0 \end{aligned}$	$\mathrm{E}_{1}: 22 \%$	$\mathrm{E}_{2}: 22 \%$	$\mathrm{E}_{3}: 27 \%$	$\mathrm{E}_{1}: 27 \%$	$\mathrm{E}_{2}: 22 \%$	$\mathrm{E}_{3}: 27 \%$	$\mathrm{E}_{1}: 27 \%$	$\mathrm{E}_{2}: 21 \%$	$\mathrm{E}_{3}: 29 \%$	$\mathrm{E}_{1}: 26 \%$	$\mathrm{E}_{2}: 30 \%$	$\mathrm{E}_{3}: 26 \%$
$\begin{aligned} & \mathrm{UA}^{-}(\mathrm{E}) \leq 0 \leq \\ & \mathrm{UA}^{+}(\mathrm{E}) \end{aligned}$	$\mathrm{E}_{1}: 24 \%$	$\mathrm{E}_{2}: 27 \%$	$\mathrm{E}_{3}: 43 \%$	$\mathrm{E}_{1}: 32 \%$	$\mathrm{E}_{2}: 27 \%$	$\mathrm{E}_{3}: 43 \%$	$\mathrm{E}_{1}: 35 \%$	$\mathrm{E}_{2}: 30 \%$	$\mathrm{E}_{3}: 36 \%$	$\mathrm{E}_{1}: 38 \%$	$\mathrm{E}_{2}: 38 \%$	$\mathrm{E}_{3}: 37 \%$
$\begin{aligned} & \mathrm{UA}^{-}(\mathrm{E}) \leq \\ & \mathrm{UA}^{+}(\mathrm{E}) \end{aligned}$	$\mathrm{E}_{1}: 89 \%$	$\mathrm{E}_{2}: 92 \%$	$\mathrm{E}_{3}: 84 \%$	$\mathrm{E}_{1}: 92 \%$	$\mathrm{E}_{2}: 97 \%$	$\mathrm{E}_{3}: 95 \%$	$\mathrm{E}_{1}: 93 \%$	$\mathrm{E}_{2}: 97 \%$	$\mathrm{E}_{3}: 96 \%$	$\mathrm{E}_{1}: 93 \%$	$\mathrm{E}_{2}: 94 \%$	$\mathrm{E}_{3}: 92 \%$

$\begin{array}{\|l} \hline \mathrm{UA}^{-}(\mathrm{E}) \geq \\ \mathrm{UA}^{+}(\mathrm{E}) \\ \hline \end{array}$	$\mathrm{E}_{1}: 97 \%$	$\mathrm{E}_{2}: 95 \%$	$\mathrm{E}_{3}: 97 \%$	$\mathrm{E}_{1}: 95 \%$	$\mathrm{E}_{2}: 97 \%$	E_{3} : 95%	$\mathrm{E}_{1}: 99 \%$	$\mathrm{E}_{2}: 99 \%$	$\mathrm{E}_{3}: 97 \%$	$\mathrm{E}_{1}: 97 \%$	E_{2} : 98%	$\mathrm{E}_{3}: 93 \%$
$\begin{aligned} & \mathrm{UA}^{-}(\mathrm{E}) \geq 0 \geq \\ & \mathrm{UA}^{+}(\mathrm{E}) \end{aligned}$	$\mathrm{E}_{1}: 59 \%$	$\mathrm{E}_{2}: 51 \%$	$\mathrm{E}_{3}: 57 \%$	$\mathrm{E}_{1}: 51 \%$	E_{2} : 54%	$\mathrm{E}_{3}: 54 \%$	$\mathrm{E}_{1}: 57 \%$	$\mathrm{E}_{2}: 57 \%$	$\mathrm{E}_{3}: 62 \%$	$\mathrm{E}_{1}: 49 \%$	E_{2} : 61%	$\mathrm{E}_{3}: 54 \%$
$\begin{aligned} & \mathrm{UA}^{+}(\mathrm{E})+ \\ & \mathrm{UA}^{-}(\mathrm{E}) \leq 1 \\ & \hline \end{aligned}$	$\mathrm{E}_{1}: 92 \%$	$\mathrm{E}_{2}: 95 \%$	$\mathrm{E}_{3}: 95 \%$	$\mathrm{E}_{1}: 89 \%$	$\mathrm{E}_{2}: 95 \%$	$\mathrm{E}_{3}: 100 \%$	$\mathrm{E}_{1}: 99 \%$	$\mathrm{E}_{2}: 99 \%$	$\mathrm{E}_{3}: 99 \%$	$\mathrm{E}_{1}: 97 \%$	$\mathrm{E}_{2}: 99 \%$	E_{3} : 98%
$\begin{aligned} & \mathrm{UA}^{+}\left((\mathrm{E}), \mathrm{UA}^{-}\right. \\ & (\mathrm{E}) \geq 0 \end{aligned}$	$\mathrm{E}_{1}: 97 \%$	$\mathrm{E}_{2}: 97 \%$	$\mathrm{E}_{3}: 97 \%$	$\mathrm{E}_{1}: 97 \%$	$\mathrm{E}_{2}: 100 \%$	$\mathrm{E}_{3}: 100 \%$	$\mathrm{E}_{1}: 100 \%$	$\mathrm{E}_{2}: 98 \%$	$\mathrm{E}_{3}: 100 \%$	$\mathrm{E}_{1}: 98 \%$	$\mathrm{E}_{2}: 99 \%$	$\mathrm{E}_{3}: 97 \%$
$\begin{aligned} & \mathrm{TA}^{+}=\mathrm{TA}^{-}= \\ & \mathrm{ITA}^{-}=\mathrm{ITA}^{+}= \\ & 0 \end{aligned}$		8\%			11\%			8\%			7\%	
$\begin{aligned} & \mathrm{TA}^{+}, \mathrm{ITA}^{-} \leq 0 \\ & \leq \mathrm{TA}^{-}, \mathrm{ITA}^{+} \end{aligned}$		19\%			24\%			13\%			10\%	
$\begin{aligned} & \mathrm{TA}^{+}=\mathrm{ITA}^{-} \leq 0 \\ & \leq \mathrm{TA}^{-}=\mathrm{ITA}^{+} \end{aligned}$		16\%			22\%			12\%			9\%	
$\begin{aligned} & \mathrm{TA}^{+}=\mathrm{ITA}^{-} \leq \\ & \mathrm{TA}^{-}=\mathrm{ITA}^{+} \end{aligned}$		32\%			51\%			56\%			54\%	
$\begin{aligned} & \mathrm{TA}^{+}=\mathrm{ITA}^{-} \geq \\ & \mathrm{TA}^{-}=\mathrm{ITA}^{+} \end{aligned}$		57\%			54\%			77\%			70\%	
$\begin{aligned} & \mathrm{TA}^{+}=\mathrm{ITA}^{-} \geq 0 \\ & \geq \mathrm{TA}^{-}=\mathrm{ITA}^{+} \end{aligned}$		22\%			22\%			40\%			35\%	
$\begin{aligned} & \mathrm{TA}^{+}, \mathrm{ITA}^{-} \geq 0 \\ & \geq \mathrm{TA}^{-}, \mathrm{ITA}^{+} \end{aligned}$		32\%			30\%			43\%			41\%	
$\begin{aligned} & \mathrm{TA}^{+}=\mathrm{ITA}^{-} \& \\ & \mathrm{TA}^{-}=\mathrm{ITA}^{+} \& \\ & \mathrm{TA}^{+}+\mathrm{ITA}^{+} \leq 1 \& \\ & \mathrm{TA}^{-}+\mathrm{ITA}^{-} \leq 1 \end{aligned}$		57\%			57\%			78\%			73\%	
$\begin{aligned} & 0 \leq \mathrm{TA}^{+}+\mathrm{ITA}^{+} \\ & \leq \\ & \& \quad 0 \leq \mathrm{ITA}^{-}+ \\ & \mathrm{TA}^{-} \leq 1 \end{aligned}$		89\%			92\%			99\%			97\%	

Table B.1: Proportion of subjects satisfying each prediction

